Centro Interdipartimentale per la Ricerca Applicata e i Servizi nel Settore della Meccanica Avanzata e della Motoristica

Unità Operativa di Ricerca 1.4 Laboratorio di tecniche antincendio per l'industria meccanica

Responsabile

Prof. Ing. Paolo Tartarini

Team

Ing. Alberto Muscio, ricercatore Ing. Paolo E. Santangelo, ricercatore dedicato

Ing. Orsola Errico, ricercatore dedicato Ing. Marco Cavazzuti, ricercatore dedicato

FIRE PROTECTION

Water Mist Systems

paolo.tartarini@unimore.it

Discharge and dispersion analysis of water mist sprays Characterization of the atomization process of a water jet exiting a high-pressure single injector:

- laser-based experimental device
- data on the drop size distribution are collected by experiments at high pressure (80 bar)
- a theoretical model has been developed to predict velocity at the injector outlet
- CFD predictions by FDS code are carried out for the distribution of mass flux at different heights from the outlet

INTRODUCTION AND FOCUS

SPRAY CHARACTERIZATION: AREAS OF INVESTIGATION; PARAMETERS OF INTEREST

ATOMIZATION & DISPERSION

- DROP SIZE & MASS FLUX DISTRIBUTION
- INITIAL VELOCITY
- SPRAY CONE ANGLE

PRESSURE RANGE FOR THE EXPERIMENTAL TESTS: 50 - 90 bar

EXPERIMENTAL TESTS: MEASUREMENT TECHNIQUES AND INSTRUMENTS

Drop Size

Malvern Spraytec

Mass-Flux Distribution Mechanical Patternator

Initial Velocity

Particle Image Velocimetry (PIV)

Spray Cone Angle

PIV Maps / Velocity Profiles

EXPERIMENTAL FACILITY

Sketch of the experimental facility. a) view from side: 1. Nozzle, 2. Tank, 3. Electric Pump, 4. Pressure Gauge, 5. *Malvern Spraytec*, 6. PIV Laser Emitter, 7. Data-Acquisition System; b) view from above: 8. PIV CCD Camera, 9. Mechanical Patternator.

DROP-SIZE AND MASS-FLUX MEASUREMENT: METHODOLOGY

Drop-size measurements are weighted through mass-flux distribution. Raw results given by *Malvern Spraytec* are biased because of the mismatch between the shape of the laser beam (sampling volume) and the shape of a spray section. Hypothesis of radial symmetry has been applied.

MASS-FLUX DISTRIBUTION: EXPERIMENTAL RESULTS

The radial coordinate has been reconstructed setting the center of mass as the 0 point (*real 0*). It is not perfectly coincident with the geometric 0 point because of little experimental asymmetries (distance lower than 18 mm).

DROP-SIZE RECONSTRUCTION

- Volume-flux distribution has been mirrored with respect to y axis;
- A polynomial curve has been employed to fit the obtained points;
- Drop-size data have been averaged over mass-flux curve to reconstruct the experimental CVF (Cumulative Volume Fraction) vs. Drop Size curve.

Rosin-Rammler Log-Normal Distribution

$$CVF = \begin{cases} (2\pi)^{-1/2} \int_{0}^{D_{CVF}} (\gamma'D)^{-1} e^{-\frac{[\ln(D/D_{\nu}50)]^{2}}{2\gamma'^{2}}} dD & (D_{CVF} \le D_{\nu}50) \\ 1 - e^{-0.693(D_{CVF}/D_{\nu}50)^{\gamma}} & (D_{\nu}50 < D_{CVF}) \end{cases}$$

DROP SIZE: EXPERIMENTAL RESULTS

PIV VISUALIZATION OF INITIAL SPRAY

- No seeding particles have been added: droplets are tracking particles themselves.
- Initial velocity has been measured only on the plane containing the injector axis, because tangential component becomes negligible after about 5 mm along the axis.
- Breakup occurs in the first 2 mm; the investigation region covers the first 40 mm.

PIV MAPS OF THE INITIAL SPRAY

Velocity vectors and contours at 80 bar

INITIAL VELOCITY: EXPERIMENTAL RESULTS

Radial velocity profiles along the injector axis and initial velocity magnitude

EVALUATION OF SPRAY-CONE ANGLE

PHYSICAL MODEL - PREDICTIVE CORRELATION

An inviscid model (Bernoulli model) has been developed following a classical approach to pressure-swirl atomizers (Lefebvre, 1989).

$$V_2 = \left(\frac{2p_{PG}}{\rho_L}\right)^{1/2}$$

$$\dot{m}_L = \rho_L A_F V_2 = \rho_L C_D A_{TOT} V_2 = C_D A_{TOT} (2\rho_L p_{PG})^{1/2}$$

$$C_D = \frac{FN}{A_{TOT}} \left(\frac{\rho_L}{2}\right)^{1/2}$$

Radcliffe's correlation

$$SMD = 7.3 \cdot \sigma^{0.6} \cdot v^{0.2} \cdot m_L^{0.25} \cdot p_L^{-0.4}$$

COMPARISON BETWEEN EXPERIMENTAL AND THEORETICAL RESULTS

In collaboration with

