

SCHEDA GRITT

Struttura	DIMEC – INTERMECH
GRITT	Laboratorio ARC (Costruzione Rapida Avanzata) e MICROMAN (MICROmechanisms in MANufacture)
Descrizione	I Laboratori, collocati presso il Centro Laboratori Pesanti di Via Vignolese, sono dedicati all'approfondimento delle tematiche connesse con lo sviluppo integrato di prodotto-sistema di produzione-processo e alla caratterizzazione di manufatti e materiali in funzione dei parametri di lavorazione, finalizzata all'ottimizzazione di processo.
Responsabile unità	Andrea Gatto
Sito Web di riferimento	www.ingmo.unimore.it/site/lab-arc-microman.html
Attività e Servizi	Le attività e i servizi riguardano due ambiti: la ricerca inerente le tecniche di Time Compression e la valutazione delle prestazioni di processi di lavorazione innovativi.
	Per il primo aspetto le competenze riguardano le tecniche di Costruzione Additiva, Prototipazione Rapida, Rapid Tooling, Rapid Casting, Reverse Engineering, strumenti CADCAM. L'applicazione efficacie di tali tecnologie innovative a processi produttivi consolidati rappresenta una notevole potenzialità di trasferimento di competenze tecnologiche verso la realtà industriale locale.
	In merito al secondo ambito le attività riguardano l'esecuzione di prove tecnologiche (durezza, rugosità, trazione, compressione, flessione, fatica), lo studio della microstruttura e della morfologia superficiale e il controllo dimensionale ottico per oggetti di piccole dimensioni, finalizzati alla valutazione delle prestazioni di processi di lavorazione, all'ottimizzazione dei parametri e all'identificazione di soluzioni produttive innovative.

SCHEDA GRITT

Strumenti

Microscopio ottico di misura KESTREL 200 (vision Engineering)

Campo di misura: 50 mm x 100 mm Risoluzione codificatore: $1.0 \text{ } \mu\text{m}$ Ripetibilità tavola in X e Y: $5.0 \text{ } \mu\text{m}$

Incertezza della misura: $U_{95}2D = 7+(6,5L/1000) \mu m$

Software metrologico QUADRACHECK

ELENCO STRUMENTAZIONE AUTORIZZATA DAL DIPARTIMENTO DIMEC

Macchina per prototipazione Objet 24 (tecnologia Material Extrusion)

dimensioni max pezzo 240x200x150mm³

Tolleranza dimensionale: 0.1mm

Resina FullCure VeroWhite Plus

Macchina di costruzione additiva 3D4Steel Easy (tecnologia PBF)

Potenza Laser fino a 300W

Camera di lavoro: 110 x 110 x 180 mm

Diametro Laser spot : 30 μm

Materiali: Acciai (Acciaio Maraging, AISI 316L, acciaio PH steel e altri)

gas: Nitrogeno

Macchina di finitura elettrochimica IMPULSE ECM 50

Corrente: 0 – 1000 A Voltaggio: 0 – 24 V

Modalità di corrente: Corrente continua e corrente pulsata

Minimo tempo di pulsazione: 1 ms Max. avanzamento: 0.1 – 1000 mm/min Area di lavoro (x, y, z): 400 x 162 x 147 m

Digitalizzatore a contatto PIX-30 Roland DG Corp

Volume di scansione: 304.8mm [X] x 203.2mm [Y] x 60.5mm [Z] Passo

scansione min.: X/Y 0.05mm; Z 0.025mm

Scanner laser Next Engine 3D scanner

Campo scansione: 130x97mm (macro, 25K punti/cm²); 345x257mm (wide 3.5K

punti/cm²)

Accuratezza: 0.13mm (macro); 0.38mm (wide)

Scanner laser LPX-250 Roland DG Corp

Volume di scansione: Φ254 mm, H 406 mm

Passo scansione min.: 0.2 mm

Volume di scansione: Φ254 mm, H 406 mm

Passo scansione min.: 0.2 mm

Strumentazioni per la misura della durezza: durometro Rockwell/Brinell, durometro

Shore A/D specifico per materiali polimerici, microdurometro Vickers.

SCHEDA GRITT

- Misuratore di durezza ERNST Modello NR3D: Testa

di misura Rockwell: precarico 98 N Carichi Rockwell: 588 N; 980 N; 1471 N Carichi Brinell: 612 N; 1226 N; 1839 N

Penetratori Rockwell: cono diamante; sfera 1/16"

Penetratore Brinell: sfera 2,5 mm

- Durometro Shore A /D - AFFRI:

Conforme alle norme ASTM D 2240 – ISO R.868, Stativo, Massa supplementare per Shore D

- Microdurometro Remet - HX-1000:

Carichi: 1000, 500, 300, 200, 100, 50, 25 g

Ingrandimento: 150x, 600x

Penetratore Vickers

Corsa di lavoro: 15 x 15 x 30 mm, con incrementi da 0,01 mm

Strumenti per la rilevazione della rugosità superficiale attraverso tastatore meccanico.

- Rugosimetro - DIAVITE DH-5:

Output: Ra, Rz, Rmax, R3z, Rt, Rq (RMS), tp

Lm: da 0,40 a 12,5 mm

Macchine per prove meccaniche di trazione, compressione, flessione e fatica, con fondo scala da 5kN a 100kN, capaci di coprire un'ampia gamma di materiali e di tipologie di provini. Una di queste è attrezzata con un'escursione della traversa di 10^3 mm, specifica per prove su materiali ad alta duttilità, compresi elastomeri e gomme. E' inoltre disponibile un videoestensometro per la rilevazione della deformazione del campione.

- ITALSIGMA 100:

Carico max: 100 kN

Frequenza max per prove dinamiche: 20 Hz

- ITALSIGMA 20:

Carico max: 20 kN

Frequenza max per prove dinamiche: 10 Hz Cella di carico speciale per sollecitazioni impulsive

- INSTRON 5567:

Carico max: 30 kN

Celle di carico: 10-100-1000-30000N Estensometro clip-on (gauge length 50mm)

- INSTRON 3345:

Carico max: 5 kN

Frequenza max per prove dinamiche: 10 Hz

Escursione della traversa di 10³ mm

Videoestensometro

SCHEDA GRITT

-MTS 858:

Massimo carico: 15 kN

Frequenza max per prove dinamiche: 5 Hz

Caricamento assiale e torsionale

-Macchina a fatica a risonanza RUMUL MIKROTRON 20 kN

Cella di carico: 20 kN

Massimo carico dinamico (valore picco-picco): 20 (\pm 10) kN Massimo carico statico (trazione o compressione): 20 kN

Range di frequenze: 79 – 250 Hz

Software CAD/CAM: Vero-VISI, Magics, Hypermill

Strumentazione per la preparazione di campioni e l'ispezione con microscopio ottico, dotato di videocamera CCD, per la determinazione dei micromeccanismi che intervengono nei processi di lavorazione o su materiali non convenzionali.

Microtroncatrice, **lappatrice** con carte al SiC e paste diamantate fino a 1 mm, reagenti per attacco metallografico **Microscopio – NIKON**:

Ingrandimento fino a 1000x

Illuminazione in trasmissione e riflessa, luce polarizzata

Macroscopio – WILD N3Z Heervrugg:

Ingrandimento fino a 64x

Illuminazione mediante fibre ottiche

Personale impegnato (inquadramento)

Prof. Andrea Gatto, Professore ordinario

Prof. Elena Bassoli, Professore Associato

Ing. Lucia Denti, Ricercatore t.d. art. 24 c. 3 lett. B

Ing. Antonella Sola, Ricercatore t.d. art. 24 c. 3 lett. B

SCHEDA GRITT

Referenze(case history)

Sviluppo di un supporto ergonomico per un'interfaccia uomo-calcolatore basata sul movimento oculare, in collaborazione con il Laboratorio ELaSTyC - Dip.to Scienze Biomediche - UNIMORE

Additive Manufacturing per la produzione di scaffold per la crescita cellulare, In collaborazione con Prof .Toni (Anatomia Umana- UniPR) e Dott. Spaletta (Matematica – UniBO) nell'ambito del progetto PRIN 2008 "EX-SITU REGENERATIVE BIOLOGY OF GLANDULAR PARENCHYMAL ORGANS: THE MODEL OF THE ORGANOMORPHIC SKELETON"

Study of the primary and secondary anisotropy in parts built by Laser Consolidation, In cooperation with X-AT – Exeter University (UK)

Produzione di stampi rapidi ed economici per resin transfer moulding attraverso elettrodeposizione su master in resina prodotti per fresatura a step.

Studio del processo di microforatura per elettroerosione di materiali avanzati: Inconel 718, leghe di Co-Cr-Mo, compositi a matrice ceramica allumina/TiC; per la realizzazione di fori con diametri fino a 0.25mm e rapporti di forma fino a 20.

Studio del processo di marcatura laser su Inconel 625, in collaborazione con Università di Napoli Federico II, al fine di individuare il legame fra i parametri di processo e la geometria dei solchi, la dimensione della zona termicamente alterata e le variazioni microstrutturali.

Prende parte a un progetto europeo H2020 − FOF13-2016 (Photonics and lased-based production) dal titolo "Driving up Reliability and Efficiency of Additive Manufacturing (DREAM)", con importo 3.3 M€, la cui coordinatrice è la Prof.ssa Bassoli. Il progetto si pone come obbiettivo l'implementazione della tecnologia di costruzione additiva tramite tre azioni: studio del materiale in ingresso, studio dei parametri del processo e studio del design delle parti da produrre. Il progetto coinvolge partner di grande spessore a livello europeo, per citarne solo alcuni: l'azienda produttrice di macchine per costruzione additiva tedesca EOS, l' azienda di servizi francese Poly-shape, l'università rumena di Brasov, e la nota azienda automobilistica Ferrari di Maranello.

(se disponibile)

SCHEDA GRITT

Lista convegni e	Innovative Developments in Virtual and Physical Prototyping VRAP 2013, 1-5 October
seminari seguiti dal	2013, Leiria, Portugal
personale di laboratorio.	11th A.I.Te.M. Conference, September 12-14 2011, Napoli, Italy
	FABBRICAZIONE ADDITIVA & REVERSE ENGINEERING: IL FUTURO DEL
	MANIFATTURIERO, 30th JUNE 2011, Osimo (AN)

AMST'11 - 9th International Conference on Advanced Manufacturing Systems and Technology, Mali Losinj, Croatia, June 16-17, 2011

iCAT 2008, September 17th – 18th 2008, Ptuj, Slovenia.

RTSI 2017 - IEEE 3rd International Forum on Research and Technologies for Society and Industry11-13 Settembre 2017, Modena, Italy.

BRAMAT 2019, 11th international conference on materials science & engineering, 13 -16 march 2019, Poiana Brasov